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This paper is concerned with flow-rate limitations in open capillary channels under
low-gravity conditions. The channels consist of two parallel plates bounded by free
liquid surfaces along the open sides. In the case of steady flow the capillary pressure of
the free surface balances the differential pressure between the liquid and the surround-
ing constant-pressure gas phase. A maximum flow rate is achieved when the adjusted
volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces.

In this study the steady one-dimensional momentum equation is solved numerically
for perfectly wetting incompressible liquids to determine important characteristics of
the flow, such as the free-surface shape and limiting volumetric flow rate. Using the
ratio of the mean liquid velocity and the longitudinal small-amplitude wave speed
a local capillary speed index Sca is introduced. A reformulation of the momentum
equation in terms of this speed index illustrates that the volumetric flow rate is
limited. The maximum flow rate is reached if Sca =1 locally, a phenomenon called
choking in compressible flows. Experiments with perfectly wetting liquids in the low-
gravity environment of a drop tower and aboard a sounding rocket are presented
where the flow rate is increased in a quasi-steady manner up to the maximum value.
The experimental results are in very good agreement with the numerical predictions.
Furthermore, the influence of the Sca on the flow-rate limit is confirmed.

1. Introduction
The phenomenon of flow-rate limitation caused by a choked flow is well-known

from one-dimensional flows in gas dynamics and liquid flows in open channels under
terrestrial conditions. Choking occurs when the fluid velocity v locally reaches a
limiting wave speed. In compressible gas duct flows, the characteristic limiting wave
speed is defined by the speed of sound vs . The characteristic number is the Mach
number (Ma ≡ v/vs), and the maximum flow passes through a duct when Ma= 1.
In gravity dominated open channel flows, the speed of shallow-water waves vsw

corresponds to the limiting velocity. The flow is characterized by the Froude number
(Fr ≡ v/vsw), and choking occurs for Fr = 1. A close analogy exists between both flow
types since the pressure-induced variation of density influences the gas flow in the
same manner as the pressure-induced change of cross-sectional area influences the
open-channel flow. As a consequence, the specific characteristic wave speeds can be
derived from the same universal form. The velocities given above are defined in table 2.

† Author to whom correspondence should be addressed: dreyer@zarm.uni-bremen.de
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Figure 1. (a) Liquid flow through an open capillary channel consisting of two parallel plates.
The free surfaces along the flow path x bend inwards. (b) Cross-sectional area for x = const.
(c) The symmetry plane y = 0.

In our investigation, we found that a similar phenomenon occurs if liquid flows
through an open capillary channel, as depicted in figure 1(a), leading to a limitation
in flow rate Q in the steady case. The channel consists of two parallel plates that
are connected to ducts of closed circumference. For an internal pressure p lower
than ambient pressure pa , the free liquid surfaces are concave at any cross-section, as
shown in figure 1(b). The pressure decreases in the flow direction, thus the curvatures
of the surfaces increase and the flow path constricts as indicated in 1(c). A steady
flow is obtained only for a flow rate below a critical value (Q < Qcrit). For Q > Qcrit,
the liquid surfaces collapse at the channel outlet and the flow changes from steady
single-phase flow to unsteady two-phase flow. Analogous to these phenomena, we
introduce the capillary speed index Sca ≡ v/vca where vca is the speed of longitudinal
small-amplitude waves in open capillary channels. The theoretical considerations, as
well as the experiments and the numerical computations, show that the flow limit is
reached for Sca = 1.

Open capillary channels are used in a number of applications in space liquid
management, i.e. heat pipes and propellant management devices (PMD) in surface
tension tanks of satellites. Concerning the latter, open channels are often used for
the transport and positioning of propellants. However, in spite of the high number
of applications the effect of flow-rate limitation in open capillary flows is not well
understood, requiring greater design margins or redundancy. Few publications that
study a forced liquid flow through open capillary channels consider the limiting



Choked flows in open capillary channels 189

Lengths Velocities Others Characteristic numbers

x = x ′/l vc =
√

2σ/(ρ ′a) A0 = ab Oh=
√

ρ ′ν2/(2σa)
y = 2y ′/a v = v′/vc A= A′/A0 Λ = b/a

z = 2z′/a vca = v′
ca/vc Q = Q′/(A0vc) l̃ = Oh l/(4a)

k = 2k′/a p = ap′/(2σ )
R = 2R′/a Γ = a/(2l)

R1,2 = 2R′
1,2/a Sca = v/vca

h = ah′/2 Re= 2av′/ν

Table 1. Non-dimensional variables and characteristic numbers.

flow rates. Jaekle (1991) performed numerical computations of a liquid flow in a
T-shaped capillary channel. Neglecting the surface curvature in the flow direction, the
one-dimensional momentum equation was solved numerically yielding the radius of
curvature in the cross-sectional plane and corresponding flow rates of steady and time-
dependent flows. For this model, solutions for interface shapes could not be computed
for all flow rates. Jaekle attributes this phenomenon to choking, without going into
details. Experimental investigations of forced flow through an open capillary parallel-
plate channel were performed in a 4.74 s drop tower by Rosendahl et al. (2002).
An upper bound was found for the steady volumetric flow rate. Above that limit,
the free surfaces collapsed and gas ingestion occurred at the channel outlet. The
experiments are based on the work of Dreyer, Delgado & Rath (1994). They
investigated the rise of liquid between two parallel plates after a step reduction
of gravity in a drop tower. It was shown that the velocity of the rising liquid cannot

exceed vc

√
1 − Λ−1, a critical velocity similar to that introduced in the present work.

Here, vc is the characteristic velocity defined in table 1 and Λ = b/a is the aspect
ratio of the channel. Likewise, motivated by challenges in low-gravity propellant
management, Srinivasan (2003) computed the flow rates of capillary self-driven liquid
flows in open parallel-plate channels. A semi-analytical method for the solution of the
steady three-dimensional Stokes equations was proposed that assumes extremely small
flow rates. For two data sets, the computations were compared to the experimental
results from Rosendahl et al. (2002). The computed flow rate was approximately three
times lower than the experimental measurement which the author attributes to the
inertia in the experiment.

In summary, we found a flow limitation in open capillary channels which is similar
to choking in compressible duct flows and open channel flows under gravity. Our
experimental, numerical and analytical results coincide well and demonstrate the
general features of choked capillary channel flows.

This paper is organized in six sections. In § 2, the flow through the open capillary
channel is formulated. Attention is drawn to the modelling of the free surface and the
irreversible pressure loss along the flow path. The numerical procedure used to solve
the governing equations is also introduced. In analogy to similar flows, § 3 identifies
the effect of the flow-rate limitation for open capillary channels. The experimental
set-ups and procedures are presented in § 4, and in § 5 the experimental, numerical and
analytical results are compared. Characteristic features of the flow such as contour
lines of the surface profiles and maximum flow rate are discussed as well as the
influence of Sca . The paper is summarized in § 6.
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2. The model
The flow of an incompressible Newtonian liquid through an open parallel-plate

channel, as shown in figure 1(a), is considered. The gap distance, the width of the plates
and the length of the open section are denoted by a, b and l, respectively. The origin
of the coordinate system is located in the centre of the inlet cross-section. Since all
experiments were performed with perfectly wetting liquids, the model is restricted to
this case. Isothermal conditions are assumed. The model is restricted to steady flow
conditions for Q < Qcrit, thus the process of the collapsing surfaces is not considered.
Since the maximum Reynolds number Re < 103 (see table 1), the flow is considered
to remain laminar.

2.1. Scaling

The flow along the channel axis x is assumed to be one-dimensional (see § 2.5) and is
characterized by the mean velocity v and the liquid pressure p. Table 1 provides the
quantities used for non-dimensionalization. Velocities are scaled by vc =

√
2σ/(ρ ′a)

where σ is the surface tension and ρ ′ the density (the prime is necessary here to dis-
tinguish the constant dimensional density from the variable non-dimensional density
used in § 3). The cross-sectional area A is scaled by A0 = ab. The x-axis is scaled with
the channel length l, all other lengths with a/2. For the discussion of the physical
effects, the dimensionless length l̃

l̃ =
Ohl

4a
(2.1)

is preferred, which is the usual scaling of frictional duct flows. Here, Oh is the
Ohnesorge number

Oh =

√
ρ ′ν2

2σa
=

2

Rec

where Rec =
2avc

ν
, (2.2)

where ν denotes the kinematic viscosity. Note that Oh is inversely proportional to
the Reynolds number, based on the characteristic velocity vc. The third characteristic
number is the aspect ratio Λ = b/a.

The Bond numbers

Boi =
ρ ′giaLi

2σ
, (2.3)

which are obtained for each axis i = x, y, z with the characteristic length Li = a, b, l,
respectively, are defined by the ratio of the hydrostatic pressure caused by the
acceleration gi and the capillary pressure. Since all experiments are performed under
reduced gravity conditions (see § 4), Boi is always O(10−3) and therefore the effect of
the hydrostatic pressure is not considered.

2.2. Governing equations

The dimensionless governing equations are the momentum equation in flow direction x

dp + v dv − dwf = 0 (2.4)

and the mass balance equation

dA

A
+

dv

v
=

dQ

Q
= 0, (2.5)

where dwf is the local irreversible pressure loss per unit volume. The volumetric
flow rate Q is defined by Q =Av. The capillary pressure p − pa is related to the
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curvature of the free surface by the Gauss–Laplace equation (assuming zero normal
and tangential stresses at the free surface and a passive overlying gas)

p − pa = −h = −
(

1

R1

+
1

R2

)
(2.6)

(Landau & Lifschitz 1959), where h/2 is the mean curvature of the liquid surface. R1

and R2 are the principal radii of curvature to be considered in § 2.3. Since the ambient
pressure pa is constant, the pressure gradient in (2.4) becomes

dp = −dh. (2.7)

Applying (2.5), the convective term of (2.4) can be rewritten as

v dv = −Q2

A3
dA. (2.8)

The irreversible pressure loss due to viscous forces dwf consists of two parts, the fully
developed laminar viscous pressure loss dwpf and an additional entrance pressure
loss dwSf which is a result of the change of the velocity profile from the entrance
profile to the parabolic velocity distribution (Poiseuille flow). The modelling of this
additional pressure loss is important for reproducing the experimental results. For
one-dimensional flows with constant cross-section, both pressure losses can be derived
from analytical solutions of the Navier–Stokes equation. The local pressure loss of a
fully developed flow reads

dwpf = −Kpf Oh

8a
lv dx = −Kpf

2
l̃v dx, (2.9)

with Kpf = 96 (White 1986). For the additional pressure loss due to the profile
change, a solution deduced by Sparrow & Lin (1964) is applied. Only the conclusion
is presented here. Assuming an initial plug flow in the entrance cross-section, the
additional total pressure loss �p′ is given by �p′/(ρ ′/2v′2) = KSf (x̂), where KSf is the
local loss factor depending on the coordinate x̂ = 4νx ′/(a2v′). The differential form
yields

dwSf = −8K̂Sf (x)l̃v dx where K̂Sf =
dKSf (x̂)

dx̂
. (2.10)

Note that this term only contributes within the entrance length le in which the profile
changes proceed. In the experimental configuration, the flow passes a duct before
entering the open channel. Therefore, the velocity profile at the channel inlet is partly
developed and deviates from the assumed plug profile. To consider this entrance
velocity profile, the coordinate x in (2.10) is shifted by a parameter s0. For s0 = 0,
the inlet velocity distribution is constant and the integration of dwSf along the
complete entrance length is required. For s0 � le, the parabolic profile is fully
developed, thus dwSf = 0. In the experimental part, s0 is provided based on three-
dimensional numerical calculation of the flow path before the channel entrance.
Finally, the total irreversible pressure loss dwf is determined by

dwf = −0.5[Kpf + 16K̂Sf (x + s0)]l̃v dx. (2.11)

2.3. Modelling of the free liquid surface

To solve (2.4) and (2.5), an additional relation is required that connects the cross-
sectional area A to the capillary pressure p or mean curvature h/2. Because of the
low Bond number, the free surfaces are symmetric with respect to the planes y =0
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Figure 2. (a) Cross-section of the channel in the (y, z)-plane at constant x. (b) Section
through the liquid in the (x, z)-plane at y = 0.

and z = 0 and the following considerations are restricted to the surface position k in
the symmetry plane y = 0

k(x) = z(x, y = 0) (2.12)

with k(x) � 0. As shown in figure 2(a), k defines the innermost line (the profile) of
the free-surface shape which is easily identified in experiments and serves well for
a comparison between experiments and theory. The aim of this section is to define
h and A as a function of k and its derivatives with respect to x, dxk =dk/dx and
dxxk = d2k/dx2. Since k defines the minimum surface position (see figure 2a), the first
derivative in the y-direction vanishes at y = 0 and the general form of the mean
surface curvature (Bronstein & Semendjajew 2004) reduces to

h(x, y = 0) =
1

R1

+
1

R2

=
1

R1

+
Γ 2dxxk

[1 + Γ 2(dxk)2]3/2
where Γ = a/(2l). (2.13)

The second term on the right-hand side defines the component of the surface curvature
in the (x, z)-plane at y = 0 given by the reciprocal principal radius of curvature R2

(radius in flow direction). The first term is the component of curvature in the (y, z∗)-
plane, which is given by the reciprocal principal radius of curvature R1 perpendicularly
to R2. Referring to figure 2(b), the axis z∗ is normal to the profile line k located at an
arbitrary point C(x, y =0, z) and the planes (x, z) and (y, z∗) are the corresponding
principal normal planes. We assume, that the pressure in the principal plane (y, z∗)
is constant in the vicinity of the free surface. Then, the curvature in this plane is
constant and the surface is a segment of a circle with radius R1 that may be derived
using the geometrical relations of figure 3(a), namely

R1 =
1 + d∗2

2d∗ , d∗ = d[1 + Γ 2(dxk)2]1/2, d = Λ − k. (2.14)

Equation (2.14) holds for d∗ � 1, which means that the liquid is pinned at the
edges of the channel and R1 may change between infinity (plane surface) and R1 = 1
(maximum curvature). Thus k � Λ − [1 + Γ 2(dxk)2]−1/2. In some experiments, a second
configuration can be observed in which the liquid separates from the edges of the
channels, as shown in figure 3(b). The free surface moves inwards between the parallel
plates and the cross-sectional area decreases further. This separation typically occurs
for large values of l̃ at the outlet. Since the contact angle between the liquid and



Choked flows in open capillary channels 193

(a) (b)
R1

R1

d*

z*

C

y

y

1

2

k

z
R = 1C

Λ

Figure 3. (a) Section through the liquid at the (y, z∗)-plane at the point C. (b) Cross-section
of the channel in the (y, z)-plane at constant x for the case where the free surface is detached
from the edge.

the solid is zero (perfectly wetting liquid are used), the radius of curvature is half
the distance between the plates, R1 = 1. In summary, both pinned and separated
conditions are given by

R1 =




1 + (Λ − k)2[1 + Γ 2(dxk)2]

2(Λ − k)[1 + Γ 2(dxk)2]1/2
for k � Λ − [1 + Γ 2(dxk)2]−1/2,

1 for k < Λ − [1 + Γ 2(dxk)2]−1/2.

(2.15)

By applying (2.15) to (2.13), the capillary pressure is given by k and its derivatives
with respect to x, h = h(k, dxk, dxxk). For the calculation of the cross-sectional area
A (see figures 2a and 3b), we assume a rectangle minus two segments of a circle with
radius R in the (y, z)-plane. Then we obtain

A(k) =


1 − R2

2Λ
arcsin

1

R
+

1

2Λ
(R − Λ + k) where R =

1 + (Λ − k)2

2(Λ − k)
for k � Λ − 1,

(k + 1 − π/4)/Λ for k <Λ − 1.

(2.16)

Note, that A is a function of the profile line k only. For small changes of k(x), the
principal radius of curvature R1 is approximately the same as the radius R in the
coordinate plane.

2.4. Final equations

Substituting the capillary pressure (2.7), the convective term (2.8) and flow losses
(2.11) into the governing equations (2.4), (2.5) yields

dxh +
Q2

A3
dkA dxk − [Kpf + 16K̂Sf (x + s0)]

Ql̃

2A
= 0 (2.17)

and

Γ 2 dxxk +

(
1

R1

− h

)
[1 + Γ 2(dxk)2]3/2 = 0, (2.18)

respectively. The boundary conditions are the position of the liquid surface at the
channel inlet and outlet (the surface is pinned at the edges of the closed ducts) and
the surface curvature at the inlet:

k(x = 0) = k(x = 1) = Λ,

h(x = 0) = h0. (2.19)
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The values for h0 and s0 will be computed numerically for the special experimental
configuration (see § 4.4). Note that in the experimental configuration, k(x = 0) and
k(x = 1) are not exactly equal to Λ. Therefore, in our numerical algorithm we use the
exact boundary condition to be consistent with the experiments.

2.5. Principal assumptions and limitations of the model

In this section, we justify our principal assumption: the flow along the channel axis
x is one-dimensional, which requires (i) that the velocity component in the flow
direction is considerably greater than the lateral flow components and (ii) that the
rate of change of the cross-section in the flow direction is sufficiently small. The
first requirement depends on the experiment design and is approximated well in the
case of the sounding rocket experiment as discussed in § 4.4. The second requirement
is fulfilled well for the main flow path. Deviations from these conditions are to be
expected at the channel inlet and outlet and are discussed in § 5.2. To comply with
these assumptions, we limit the validity of our work to Λ � 3.

Because of the low-gravity environment, the hydrostatic pressure distribution over
the channel cross-section is negligible, and ∂p/∂y, ∂p/∂z � ∂p/∂x follows from the
momentum equation. Thus, the pressure p over the flow cross-section area A may
be considered as constant. Deviating from this assumption, the surface modelling
assumes a constant pressure in the main curvature plane, which is more realistic for
the inlet and outlet region.

For the parallel-plate flow with A= const, analytical solutions are known, providing
the distribution of the velocity and the pressure along the channel axis x (see
§ 2.2). According to the usual methods for quasi one-dimensional flows, the pressure
distribution gained from the constant cross-section problem is applied locally.

2.6. Numerical procedure

For the numerical solution of the coupled nonlinear system (2.17)–(2.19), we treat h

and k as variables and use finite differences. For the short and medium channels, we
use a uniform grid with N � 200 discrete points. To limit computation time, we use
adaptive grids for the long channels, employing smaller grid spaces in the vicinity
of the strongest necking and wider grid spaces elsewhere with N =800 points. In
the inner region, the derivatives dxk and dxxk are discretized by second-order central
differences and, for a better stability, dxh is discretized by a first-order backward
difference. At the outlet boundary point, the derivative dxk in (2.17) is calculated by a
first-order backward difference. The system of nonlinear equations is solved with the
classical Newton method and yields the position k(x) = f (Oh, Λ, l̃, Q) of the liquid
surface as well as the velocity v(x) and the curvature h(x) with the same dependence.

As the numerical critical flow rate Qnum
crit , we define the maximum flow rate Q leading

to the convergence of the numerical algorithm (with a relative error of 10−7 and a
maximum of 25 Newton iterations). For the numerical computations of the speed
index at the smallest cross-section, this point is computed using a Neville interpolation
from the three nearest points (Press et al. 1992). For the speed index itself (see (3.3)),
we use a second-order central difference on three adjacent flow rates, namely

Snum
ca (Q2, x) =

Q2

A(Q2, x)

[
−A(Q2, x)

h(Q3, x) − h(Q1, x)

A(Q3, x) − A(Q1, x)

]−1/2

(2.20)

with Q1 < Q2 <Q3.
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Compressible Open Elastic
gas flow channel flow tube flow

Bo � 1 Bo � 1

Longitudinal wave speed vs =

√
dp

dρ̂
vsw =

√
gzk′

vc

vca =

√
−A

dh

dA
ve =

√
A

d(p − pa)

dA
Dimensionless number Ma = v/vs Fr = v/vsw Sca = v/vca S = v/ve

Table 2. Overview of the dimensionless numbers derived from the general
longitudinal wave speed (3.1).

3. The effect of flow-rate limitation
In many ways, one-dimensional steady flows such as in open channels, in flexible

tubes and compressible gas flows are similar since the governing equations of these
flows are derived from the same conservation equations of mass and momentum. For
such flows, the mass flow rate is limited owing to a choking effect. The key role is
played by the longitudinal small-amplitude wave speed

c =

√
A

dp

d(ρ̂A)
, (3.1)

which is based on the assumption that the cross-section area A as well as the density ρ̂

(scaled with ρ ′) varies with the liquid pressure only (see Lighthill 1978). The maximum
flow rate is reached when the flow locally achieves c.

For particular flows, (3.1) simplifies. Some special cases are given in table 2. For
compressible flows with constant cross-sectional area, A= const, (3.1) yields the speed
of sound at constant entropy which defines the Mach number Ma. For open-channel
flows under normal gravity (Bo � 1) with variable cross-section of the flow path and
constant density, (3.1) yields the shallow-water wave speed which defines the Froude
number Fr. The wave speed in a flexible tube depends on the relation between the
cross-section and the differential pressure across the tube wall, p − pa (Shapiro 1977).
The characteristic number is the speed index S which approaches unity in the case of
choking similarly as does Ma and Fr. The work of Shapiro (1953) is recommended
owing to its description of choking phenomena and detailed derivation of all relevant
equations.

For the case of capillary flows (Bo � 1 and ρ̂ = ρ = 1), we generalize the wave speed
of Jaekle (1991) to obtain

vca =

√
−A

dh

dA
, (3.2)

after substituting the pressure in (3.1) by pa − h from (2.6). Scaling the mean liquid
velocity v = Q/A by (3.2) yields the capillary speed index

Sca =
v′

v′
ca

=
v

vca

= Q

√
− dA

A3dh
. (3.3)

Note that for the calculation of (3.2), a one-to-one relation between the capillary
pressure and the cross-section A= A(h) is required, which is unknown in general.

Owing to the similarities of the flow highlighted in table 2, the flow rate of an
open capillary channel flow reaches its maximum when Sca = 1 somewhere along the
channel, as will be shown using a simplified model. From the integration of (2.4) it
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follows that the total pressure P , defined by

P = p + 1
2
v2 = pa − h + 1

2
v2, (3.4)

varies along the channel axis x because of the influence of friction. We assume, that P

is constant at an arbitrary but fixed position of the channel. With (3.4), the volumetric
flow rate may be written as

Q = Av = A
√

2(P − pa + h). (3.5)

The maximum flow rate is reached if the derivative of Q with respect to h vanishes.
After simplification of (3.5) by means of (3.2) and the definition of Sca we obtain

dQ

dh
=

A

v

(
1 − S2

ca

)
. (3.6)

Thus, the flow rate is maximal for Sca = 1. In keeping with the choked-flow analogy,
we denote a flow with Sca < 1 as subcritical. The case Sca > 1 is not considered in this
paper.

To further demonstrate the ‘choking effect’ in our flow problem, a reformulation
of (2.17) is required. For this reason, the dependent variables p (or h), A and Sca are
formulated in terms of the independent variable x. Since A= A(h), the differential
relationship between dh and dA is given by

dA

A
=

1

A

dA

dh
dh = − dh

v2
ca

= −S2
ca

v2
dh. (3.7)

Differentiation of (3.2) yields

2
dvca

vca

= M
dA

A
where M = 1 + A

d2h/dA2

dh/dA
. (3.8)

Under application of (2.5) and (3.8), differentiation of the square of (3.3) yields

dS2
ca

S2
ca

= 2
dv

v
− 2

dvca

vca

= −2
dA

A
− 2

dvca

vca

= −(2 + M)
dA

A
. (3.9)

The following relations are obtained by straightforward algebraic manipulation.
Substituting (3.7) into (2.17), the change of the capillary pressure in flow direction
becomes

dh =
(Kpf + 16K̂Sf ) l̃Q

2A
(
1 − S2

ca

) dx. (3.10)

Applying (3.7) and (3.9) to (3.10) yields

dS2
ca

S2
ca

= (2 + M)
S2

caA(Kpf + 16K̂Sf )l̃

2Q
(
1 − S2

ca

) dx = −(2 + M)
dA

A
. (3.11)

The equations (3.10) and (3.11) define the change of the dependent variables h, A

and Sca in flow direction x. Since M, Kpf , K̂Sf , l̃, A and Q are positive, the sign of
(3.11) depends on the sign of (1 − S2

ca). For Sca < 1, Sca increases in flow direction and
vice versa. The condition Sca = 1 is a singular point where the derivative dSca/dx is
discontinuous. For a given Q and inlet speed index Sca0 = Sca(x =0), (3.11) states that
a maximum channel length lmax exists for which the Sca(x = lmax) = 1. At this state it is
impossible to increase l without changing the inlet boundary conditions. From (3.6)
it follows that Q is maximal when x = lmax.
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Liquid ρ ′ (kg m−3) ν (10−6 m2 s
−1

) σ (Nm−1)

PDMS 766 ± 0.2% 0.69 ± 2% 0.0158 ± 2%
FC-77 1773 ± 0.2% 0.85 ± 3% 0.0153 ± 3%

Table 3. Test liquids and properties at T = 20 ◦C. Polydimethylsiloxane (PDMS, silicone oil)
provided by Dow Corning, Fluorinert liquid FC-77 provided by 3M. The static contact angle is
γstat = 0 on Perspex and glass. The density, kinematic viscosity and surface tension are denoted
by ρ ′, ν and σ , respectively.

4. Experiments
To verify the theoretical model presented in § 2, we performed experiments aboard

a sounding rocket and in a drop tower. Both facilities provide a low-gravity environ-
ment of gi ∼ 10−4g0 and gi ∼ 10−5g0, respectively, satisfying Bo � 1 in all axes. The
experiments performed in the 4.74 s drop tower in Bremen cover a wide range of
the governing parameters Λ, Oh and l̃. The results show a good agreement with
theoretical predictions concerning the contour profiles and the critical volumetric
flow rates. However, because of the short experimental time, the expected influence
of Sca could not be observed clearly. An experiment with longer observation time
was therefore developed for the sounding rocket TEXUS-37.† In contrast to the
drop-tower experiments, the flow rate in the open capillary channel could be varied
during the experiment period of 6 min allowing a stepwise increase to the limit of the
steady flow. The following sections focus on the TEXUS-set-up, the performance and
data evaluation. The drop-tower experiments are briefly summarized in § 4.2. Details
are available from Rosendahl et al. (2002).

4.1. Experiments aboard TEXUS-37

4.1.1. Experiment set-up

A diagram of the experimental set-up is shown in figure 4. The core element of
the set-up consists of a cylindrical liquid reservoir � with a compensation tube �

and an observation chamber � with the open channel. The channel is connected to
the liquid reservoir � via a nozzle �. The compensation tube as well as the nozzle
can be closed pneumatically by a gate valve � and a stemple �. The liquid reservoir
was especially designed to enable a controlled filling of the channel at the beginning
of the microgravity phase and provide defined boundary conditions at the channel
inlet. The flow through the channel is established by two gear pumps. One pump
(pu1) supplies the reservoir through a circular gap on the bottom of the reservoir
at flow rate Qs . The flow enters through a screen-controlled rectifier � to ensure a
homogenous velocity distribution. The second pump (pu2) withdraws the liquid via
the channel and the nozzle from the reservoir at flow rate Q. The unavoidable flow
rate differences between both pumps are accommodated by the Perspex compensation
tube � (inner diameter 45 mm).

The capillary channel consists of two parallel quartz plates with breadth b =25mm,
gap a = 5 mm and length l = 46.6mm. With the properties of the applied liquid
polydimethylsiloxane (PDMS) from table 3, the governing parameters in table 4 are

† A video of the sounding rocket experiment aboard TEXUS-37 is available at http://
www.zarm.uni-bremen.de/2forschung/grenzph/isoterm/crit velo/chok eng.htm.
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Figure 4. Diagram of the experimental set-up to investigate an open capillary channel flow
aboard the sounding rocket TEXUS-37. The flow is established by the supply pump pu1 and
the withdrawal pump pu2. � observation chamber, � liquid reservoir, � nozzle, � stemple,
� screen, � illumination, � compensation tube, � gate valve, 	 supply membrane tank, 10©
disposal tank. pa is the ambient pressure, p0 the pressure at the channel inlet, p1 the pressure
inside the compensation tube and H the position of the liquid meniscus.

Number Liquid a (mm) b (mm) l (mm) t ′
r (s) Oh Λ l̃

TE-35a PDMS 5 25 46.6 – 1.5 × 10−3 5.0 3.5 × 10−3

DT-29 FC-77 2 20 74.9 1.7 4.6 × 10−3 10.0 4.3 × 10−2

DT-32 PDMS 3 10 94.2 1.3 2.0 × 10−3 3.3 1.5 × 10−2

DT-33 PDMS 3 15 96.3 1.2 2.0 × 10−3 5.0 1.6 × 10−2

DT-34 PDMS 3 30 94.6 1.2 2.0 × 10−3 10.0 1.5 × 10−2

DT-35 PDMS 5 25 93.4 1.5 1.5 × 10−3 5.0 7.1 × 10−3

DT-35a PDMS 5 25 48.4 0.7 1.5 × 10−3 5.0 3.7 × 10−3

Table 4. Experiment parameters for the experiments aboard of TEXUS-37 (TE) and in the
drop tower (DT) with plate distance a, plate breath b, channel length l, rise time of the liquid
meniscus t ′

r , Ohnesorge number Oh, aspect ratio Λ and dimensionless channel length l̃.

obtained (TE-35a). To prevent the spreading of liquid away from the channel, the
inlet and outlet are covered by thin metal plates at the sides (� in figure 5a).

A front view normal to the plates is shown in figure 5(a). The channel has precise
markings for the calibration and evaluation of the video images. Two CCD cameras
were used. The camera fields of view overlap by approximately 10 mm, and the image
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Figure 5. (a) Front view of the channel. The optical axes of the cameras are aligned normal to
the top plate. The inlet and outlet are covered by thin FC-725 coated metal plates at the sides
�. Owing to total reflection, the liquid interfaces appear dark �. (b) The profiles correspond
to the distances kL and kR .

resolution is 47 µm/pixel. A homogeneous illumination is achieved by an LED panel
with a Teflon diffusor (� in figure 4). Owing to total reflection, the profiles of the gas–
liquid interfaces appear as dark zones on the video images. Referring to figure 5(b),
they are defined by the distances Λ − kL and Λ − kR , where the positions kL(x) and
kR(x) correspond to the left- and right-hand side profiles of the surface shape in the
plane y = 0, respectively. During the experiment, the video signals were downlinked
to the ground and recorded on VCR (S-VHS quality).

4.1.2. Experiment performance

The sounding rocket was launched from the ESRANGE (European Space Range),
Kiruna, Sweden. During the ballistic flight phase, the maximum Bond number was
Bo = 5.6 × 10−3. The experiment was controlled manually from the ground base.

In the initial configuration prior to the launch, the compensation tube and the
nozzle were closed by the gate valve and the stemple. Once under microgravity
conditions (t ′ = 77 s), the gate valve was opened and the compensation tube was
filled by pu1. Shortly after this, the stemple was removed from the nozzle and a
capillary-driven flow into the test section ensued. After the contact with the suction
head (outlet of the channel), the liquid was withdrawn by pu2 and the system was
ready for experiments (t ′ = 115 s).

Figure 6 shows the time-dependent run of the adjusted flow rates, Q′ and Q′
s and

the filling level H ′ of the compensation tube. During the experiment, the level H ′ rose
continuously and had to be lowered six times. The experiment provides the options
to change the flow rate in 0.46 ml s−1 or 0.04 ml s−1 increments. At first, a coarse
approach to the critical flow condition with the larger increment was performed. For
Q′ = 8.29 ml s−1, the flow became time dependent, indicated by the collapse of the
surface (t ′ = 195 s). After that the step was repeated (t ′ = 245 s), but now leading to
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Figure 6. Adjusted flow rate Q′ during the TEXUS-experiment. The liquid level H ′ inside
the compensation tube rose continuously and had to be lowered six times by stopping the
supplying flow rate Q′

s .

a steady flow. Then the flow rate was decreased for the approach to the critical flow
rate with smaller step size. The maximum flow rate adjusted during this phase was
Q′ = 8.38 ml s−1. Unfortunately, the microgravity time ended before the collapse of
the surfaces occurred, thus the upper limit of flow rate was not achieved by the fine
approach.

4.2. Drop-tower experiments

The experimental set-up consists of a circular container partly filled with test liquid
and two parallel plates which are fixed upright on the container bottom. A suction
device is mounted at the upper ends of the plates. By means of a piston, a constant
flow rate can be withdrawn from the gap between the plates. Two CCD cameras are
used for flow observation with the same perspective as in the TEXUS experiment
shown in figure 5. The set-up is integrated into a drop capsule of the drop tower in
Bremen. The section of the channel fills itself by capillary rise during the free fall
of the capsule. When the liquid meniscus contacts the suction device, the piston is
started with a constant volumetric flow rate Q. To determine the critical flow rate
Q

exp
crit, several experiments at different flow rates must be performed. On average, 5

drops are used to determine Q
exp
crit with one experiment for reproduction.

Six different channels with two different liquids were investigated. The geometrical
parameter, the liquid properties and the characteristic numbers of the experiments
are provided in tables 3 and 4.

4.3. Data evaluation

The observations in both experiments are essentially the same. Typically, each stepwise
change of the flow rate by �Q disturbs the flow and excites the liquid surfaces to
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oscillate. After a certain relaxation time, the disturbances are damped out and apart
from slight oscillations the flow may be considered as steady if Q < Qcrit.

For comparison with the numerical data, both time-dependent profiles, kL and kR

from figure 5(b), were analysed and averaged yielding the average profiles k. For this
purpose the video material was digitized to 8 bit grey scale images. The profiles were
detected using a 5 × 5 Sobel technique (Jaehne 1995) and corrected regarding the
optical refraction at the interfaces of the glass plates. After consideration of errors
due to ±1 pixel resolution, the calibration and optical correction k is detected with
an accuracy of approximately �k′ = ± 0.1mm.

The determination of Sca from experiments is affected by the fact that the function
A(h) cannot be found from the experimental data. An approximate solution may be
obtained, however, for small variation of A, assuming dxk � 1. For this case, (2.13)
reduces to h =1/R, where R is defined in (2.16). In this approximation, the wave
speed (3.2) and the speed index (3.3) yields

vca1 =
1

R

√
A

dR

dA
, Sca1 = QR

√
1

A3

dA

dR

dR

dk
. (4.1)

The experimental critical flow rate Q
exp
crit is defined by

Q
exp
crit = 1

2

(
Qst

max + Qunst
min

)
, (4.2)

where Qst
max is the highest steady flow rate and Qunst

min the lowest flow rate leading to
the collapse of the free surface.

4.4. Channel inlet boundary conditions

Owing to the complex geometry, no analytical data for the determination of the
boundary condition h0 and s0 from (2.19), (2.17) are available in sufficient accuracy
and a direct measurement was not possible. For this reason, we performed three-
dimensional model computations using the finite-element code FIDAP (Version 8.0,
Fluent).

The capillary pressure at the channel inlet h0 = pa − p0 is defined by the capillary
pressure of the meniscus in the compensation tube (pa − p1) plus convective and
frictional flow losses inside the liquid reservoir and the nozzle (see figure 4). The
pressure loss non-dimensionalized with ρ ′/2v2

0 , v0 = v′(x = 0), is linear versus 1/Re0

with Re0 = 2av0/ν (White 1986). The regression of the numerical data yields the
relation

h0 =
K1Q

2

2
+

K2Oh Q

4
+ K3, K3 =

a(pa − p1)

2σ
. (4.3)

The values of K1,2,3 are given in table 5. Note that for the drop-tower experiments,
the capillary pressure of the bulk surface is negligible compared to h0 and therefore
K3 = 0.

To adapt the analytic entrance pressure loss proposed by Sparrow & Lin (1964) to
the condition of the experiment, the velocity profiles at the channel inlet are compared
between the three-dimensional model computations and the solution from Sparrow &
Lin (1964), which gives values for s0 in dependence of Q (compare with the end of
§ 2.2). It is remarkable that for all experimental configurations, s0 is nearly a linear
function of 1/Re0

s0 =
L

Re0

=
LOh

2Q
, (4.4)

where the fitted values for L are given in table 5.
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Number K1 K2 K3 L Q

TE-35a 1.4 374 0.222 −24 0.44< Q < 0.88
DT-29 2.7 168 0 −5.5 0.06< Q < 0.40
DT-32 2.2 91 0 −4.2 0.07< Q < 0.50
DT-33 2.2 138 0 −6.6 0.19< Q < 0.57
DT-34 2.3 215 0 −9.7 0.19< Q < 0.57
DT-35/35a 2.0 180 0 −5.8 0.44< Q < 0.88

Table 5. Coefficients for the entrance pressure drop at the inlet of the channel and for the
velocity profile formula. The calculations have been performed with the flow rates indicated
in the table to cover the region of the experimental data.

Q = 0.486 0.569 0.649 0.730

Figure 7. Steady flow in the open capillary channel at different flow rates below the critical
value. The flow direction is from the bottom to the top. Owing to the decreasing pressure, the
flow path narrows with increasing flow rate.

To obtain the best approximation to the one-dimensional model assumption, the
flow path before the open channel of the TEXUS experiment was optimized. The
model computations led to a nozzle with 25 mm by 30 mm rectangular inlet cross-
section that converges to the channel cross-section. The nozzle has an elliptical shape
in the (x, y)-plane, as shown in figure 4, but no constriction in the (x, z)-plane. With
this form, the lateral velocity components in the entrance cross-section of the open
channel were minimized to 2% of the longitudinal component. Concerning the x-
component of the velocity, the flow is characterized by a constant core flow with
small boundary layers along the walls.

5. Results and discussion
5.1. Experimental observations

Figure 7 shows the typical video images of the flow for Q < Qcrit during the TEXUS
experiment. As indicated by the dark zones, the surface profiles of the liquid are



Choked flows in open capillary channels 203

t′ = 197.02 s 197.22 s 197.46 s 197.66 s

197.86s 197.90 s 197.94 s 197.98 s

Figure 8. Unsteady liquid flow at a fixed flow rate above the critical value. The free surfaces
collapse and a periodic ingestion of gas bubbles is observed.

symmetrical with respect to the plane z =0. The cross-section of the flow path
decreases in the flow direction and with increasing flow rate.

For Q>Qcrit, the surfaces collapse (figure 8). A periodic ingestion of gas bubbles
is observed leading to a two-phase flow downstream the channel outlet. During the
bubble formation, the surfaces stay pinned at the sidewalls of the outlet.

5.2. Comparison of experimental and numerical profiles

Figure 9(a) shows the average profile k along the channel axis x as a function of the
adjusted flow rates Q for the TEXUS experiment. The labels refer to the evaluated
sequences provided in table 6. For characterization, we introduce the lengths l1 and l∗,
where l1 defines the inlet region with 1/R2 > 0.01, according to (2.13) and l∗ the loca-
tion of the smallest cross-section. With increasing flow rate, l∗ decreases and the
location of the minimum cross-section shifts towards the inlet. Along 0 � x � l1, the
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Figure 9. Profiles k(x) of the TEXUS experiment versus the flow rate Q. (a) Experimental
values, (b) numerical solution.

t ′ Q′ Q k∗ v∗ v∗
ca1 S∗

ca1

Number (s−1) (ml s−1)

S-01 128.65 5.52 0.486 4.704 ± 0.036 0.506 ± 0.028 3.250 ± 0.131 0.16 ± 0.01
S-02 144.09 6.46 0.569 4.636 ± 0.036 0.598 ± 0.033 2.992 ± 0.144 0.20 ± 0.02
S-03 159.43 7.39 0.649 4.532 ± 0.036 0.694 ± 0.039 2.556 ± 0.154 0.27 ± 0.03
S-07 278.50 7.82 0.689 4.480 ± 0.036 0.743 ± 0.042 2.333 ± 0.154 0.32 ± 0.04
S-04 237.08 7.82 0.689 4.472 ± 0.036 0.745 ± 0.042 2.307 ± 0.154 0.32 ± 0.04
S-08 288.76 7.87 0.694 4.468 ± 0.036 0.750 ± 0.042 2.282 ± 0.154 0.33 ± 0.04
S-09 338.73 8.10 0.713 4.428 ± 0.036 0.776 ± 0.044 2.113 ± 0.153 0.37 ± 0.04
S-10 351.53 8.15 0.718 4.400 ± 0.036 0.785 ± 0.044 1.994 ± 0.152 0.39 ± 0.05
S-11 369.75 8.19 0.721 4.392 ± 0.036 0.789 ± 0.044 1.961 ± 0.152 0.40 ± 0.05
S-12 383.41 8.29 0.730 4.372 ± 0.036 0.802 ± 0.045 1.876 ± 0.151 0.43 ± 0.05
S-06 273.56 8.29 0.730 4.372 ± 0.036 0.802 ± 0.045 1.866 ± 0.151 0.43 ± 0.05
S-05 250.64 8.29 0.730 4.372 ± 0.036 0.802 ± 0.045 1.866 ± 0.151 0.43 ± 0.05
S-13 387.65 8.34 0.735 4.368 ± 0.036 0.808 ± 0.045 1.848 ± 0.151 0.44 ± 0.05
S-14 392.29 8.38 0.738 4.348 ± 0.036 0.815 ± 0.046 1.770 ± 0.150 0.46 ± 0.05

Table 6. Data from the TEXUS experiment: the flow rate Q, the average profile k, the
average velocity v =Q/A, the wave speed vca1 and the speed index Sca1. Properties indicated
by a star are determined at the minimum cross-section at x = l∗. t ′ denotes the beginning of
the averaging interval.

curvature of the surfaces essentially adapts to the inlet pressure p0 defined by h0 from
(4.3). Since p0 < pa the surfaces bend inwards. The widening at the outlet is forced
by the pinned surfaces at the sidewalls of the channel outlet. The labels in the figure
indicate the chronological order in which the flow rates were adjusted during the
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Figure 10. Evaluated profiles from the TEXUS experiment (solid lines), error of the profile
data (dotted lines) and numerical prediction (dashed lines) for the lowest and the highest flow
rate: (a) Q = 0.486 (S-01), (b) Q =0.738 (S-14).

experiment. The comparison of the sequences S-04 and S-07 (both at Q =0.689), as
well as S-05, S-06 and S-12 (all at Q =0.730) shows the high degree of reproducibility.
The sequences S-05 and S-06 are evaluated before and after the compensation tube
was emptied which illustrates the reproducibility of the pressure boundary condition
inside the compensation tube. Note that because of insufficient contrast, the profile
points near the inlet and outlet could not be detected. The solutions of (2.17) and
(2.18) with the boundary conditions Λ(x = 0) = 5.076 and Λ(x = 1) = 5.11 (considering
the metal plates from figure 5a) and (4.3), (4.4) are displayed in figure 9(b). The surface
profiles for the different flow rates are in good agreement with the experimental data.

For a detailed comparison between experiment and theory, the lowest and the
highest realized flow rates are depicted in figure 10. The experimental profiles (solid
lines) are reproduced well by the numerical calculations (dashed lines). This level of
agreement is achieved for all sequences given in table 6. All numerical profiles are
located within the experimental error bars (dashed lines).

Figure 11 shows the average profiles of DT-29 and DT-35a representative for the
drop-tower experiments given in table 7. These experiments differ in two aspects
from the sounding rocket experiment: (i) The reorientation process of the liquid
surface in the container does not decay during the brief experiment time which
leads to disturbances of the inlet surface curvature h0, and (ii) significant transverse
flow components are also present since no nozzle is used to rectify the inlet flow.
Nevertheless, the experimental profile data (solid line) and the numerical solution
of (2.17) and (2.18) (dashed line) agree in several aspects. For small l̃, the profile
minimum and the curvature at the outlet are predicted well by the computations, in
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Figure 11. Evaluated profiles lines from the drop-tower experiments (solid lines), error of
the profile data (dotted lines) and numerical prediction (dashed lines). (a) DT-35a, Q = 0.771,
(b) DT-29, Q = 0.38. For the numerical calculation of DT-29 Oh was decreased by 2%, within
the experimental error.

Number Qst
max Qunst

min Q
exp
crit Qnum

crit k∗ S
∗exp
ca1 S∗num

ca

TE-35a 0.738 – – 0.776 4.35 ± 0.04 0.46 ± 0.05 0.43
DT-29 0.380 0.392 0.386 ± 0.006 0.391 9.05 ± 0.12 0.20 ± 0.07 0.23
DT-32 0.498 0.529 0.515 ± 0.017 0.588 2.95 ± 0.08 0.23 ± 0.03 0.25
DT-33 0.527 0.555 0.542 ± 0.015 0.603 9.38 ± 0.09 0.22 ± 0.05 0.23
DT-34 0.578 0.591 0.585 ± 0.007 0.616 9.38 ± 0.09 0.22 ± 0.05 0.24
DT-35 0.655 0.702 0.679 ± 0.024 0.730 4.49 ± 0.13 0.30 ± 0.07 0.29
DT-35a 0.771 0.796 0.784 ± 0.013 0.800 4.36 ± 0.07 0.47 ± 0.09 0.45

Table 7. Maximum steady flow rate Qst
max, minimum unsteady flow rate Qunst

min , experimental
and numerical critical flow rate Q

exp
crit and Qnum

crit , minimum surface position k∗, experimental

speed index in single radius approximation S
∗exp
ca1 and numerical with two radii of curvature

S∗num
ca at the smallest cross-section for Qst

max for all experiments.

contrast to long l̃, where the inflow region and the profile of the main flow path are
in good agreement.

5.3. The influence of the speed index and the maximum flow rate

From (3.6), it is concluded that the maximum flow rate of the steady flow is reached
when Sca = 1 locally. To verify this, we calculated the Sca from the experimental and
numerical profiles k of the TEXUS experiment. The relevant location to consider Sca

follows from (3.10) and (3.11). Along 0 � x � l∗, the flow requires positive gradients
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ca at the smallest cross-section of the flow as function of the adjusted

flow rate Q for the TEXUS experiment: single radius approximation from the experiment
(single squares with error bars) and the computations (dashed line), numerical data based on
both radii of curvature R1 and R2 (solid line).

of h and negative gradients of A, thus dh/dx > 0 and dA/dx < 0. These gradients
are only obtainable for Sca < 1, from which we conclude that the investigated flow is
subcritical. For subcritical flow, (3.11) states that the Sca increases in the flow direction.
Since (3.10) and (3.11) are monotonic functions, the maximum of Sca appears at the
smallest cross-section A∗ = A(x = l∗). For this location, table 6 provides the TEXUS
data of S∗

ca1 from (4.1) and the corresponding velocities, v∗ = Q/A∗ and v∗
ca1. With

increasing flow rate v∗ increases for continuity reasons but v∗
ca decreases, thus S∗

ca

increases. In figure 12 the experimental S∗
ca1 and the numerical prediction of S∗

ca1

and S∗
ca from (2.20) are plotted versus the flow rate. It shows that Sca exactly tends

towards unity for the numerical maximum flow rate Qnum
crit = 0.776. For Q > 0.776

no steady numerical solutions are possible. Owing to the good agreement of the
experimental and theoretical profiles, the values of both S∗

ca1 agree well. However, S∗
ca1

is overestimated for Q > 0.7 because the radius of curvature in the flow direction, R2,
is not considered. Nevertheless, the experimental data follow the numerical trend of
S∗

ca which confirms that the flow rate of the steady flow is limited owing to a choking
effect.

From table 7, it follows that experimental steady flows were possible for
Q � 0.95Qnum

crit . A closer approach to the limit might be difficult from the experimental
point of view since a small variation of Q leads to a large variation of Sca . The final
5% of flow rate changes S∗

ca1 by 50%. Close to the limit, very small increments in Q

are required to increase the flow in quasi-static manner avoiding strong non-steady
effects. For this reason, the collapse of the free surface was observed for Q =0.73
(t ′ = 195 s) during the first increase of Q with the larger increments (see discussion in
§ 4.1.2).
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Owing to the short experiment time and the limited number of experiments, the
flow-rate-dependent investigation of the speed index was not possible in the drop-
tower experiments. However, the available data for Q

exp
crit in table 7 show a good

agreement with the numerical predictions.
Although the formulation of the flow problem is steady, the longitudinal wave speed

which appears in the momentum equation allows the following interpretation. To
increase the flow rate, the pressure at the channel outlet must be decreased in response
to an increase of the withdrawal pump flow rate. The local pressure disturbance
generated at the pump propagates upstream, changes the pressure distribution p(x)
along the channel axis and establishes a higher flow rate. Inside the suction pipe, the
disturbance travels at the speed of sound. Along the open channel, it propagates at
the wave speed vca relative to the liquid flow. The relative velocity vrel is given by

vrel = v − vca = vca(Sca − 1). (5.1)

In the case of choking, Sca becomes unity at x = l∗ and vrel vanishes. For this reason,
the pressure disturbance cannot pass the minimum cross-section and the distribution
p(x) remains unchanged along the flow path 0 � x � l∗. To satisfy continuity, gas has
to be ingested from the sides into the outlet. Thus, the free surfaces collapse and the
flow becomes unsteady.

5.4. Influence of the length l̃ on the profile formation and the speed index Sca

In § 3, the mechanism of choking based on an interaction between the pressure
gradient and convective acceleration was discussed. Considering a subcritical flow,
each increase of pressure gradient accelerates the liquid as long as the local liquid
velocity is below the wave speed (3.1). Inspection of (2.4) and (2.17) shows that the
pressure gradient is changed by the convective momentum transport v dv as well as
by the frictional losses dwf . Depending on the dimensionless length l̃, two distinct
cases may be identified. For sufficiently small l̃ the frictional pressure loss vanishes
and choking is essentially caused by the convective term. In the opposite case, for
sufficiently large l̃ the pressure gradient is only related to the irreversible frictional
losses.

To investigate the influence of l̃ on the solution of (2.17), (2.18), we performed a
parametric study. For each l̃ the maximum flow rate Qnum

crit and the corresponding mean
curvature difference between the channel inlet and outlet, �h= h(x = 1) − h(x = 0),
were determined. Since the reversible convective momentum transport does not affect
a net decrease of pressure between the inlet and outlet, �h is a direct measure for the
influence of the frictional pressure loss. The calculations were performed for s0 > le,
assuming a fully developed parabolic velocity profile along the channel. The inlet
pressure boundary condition h0 was taken from the formula (4.3) with the coefficients
K1 = 1.4, K2 = 374 and K3 = 0. Figure 13 shows a plot for �h as a function of l̃.
The curve was computed for Oh =10−4 and Λ = 5, but can be seen to represent the
general behaviour. The labels of the single squares refer to the experiments given in
table 4 (black squares) and the two numerical cases discussed below (white squares).
Note that owing to the different values of Λ and Oh, the experimental values of �h

deviate slightly from those given in figure 13 (deviation stays within the squares).
The curve may be divided into three regions. For small flow lengths, (l̃ < 10−3),
the irreversible pressure loss �h is small and the flow is dominated by convective
momentum transport. In the limit of a very short length, the curvature difference �h

tends to zero. For that case, the pressure loss along the flow path is fully reversible.
For the other extreme of a very long channel, (l̃ � 10−1), the flow is dominated by
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Figure 13. Irreversible pressure loss �h as function of the channel length l̃ at Qnum
crit . The black

squares are the experiments (see § 4), the white squares the numerical examples, discussed in
this section. The dashed line is the maximum speed index.

viscous momentum transport (convection contributes <1%). In the limit l̃ → ∞, the
curvature difference �h tends towards unity yielding a pure Stokes flow. Between
these two extremes, denoted as the transition domain, the flow is controlled by both
convective and frictional pressure losses. The influence of the domains on the nature
of the flow is demonstrated by the numerical examples CONV (Oh = 10−5, Λ =5,
l̃ = 10−5, Qnum

crit = 1.123) and FRIC (Oh = 10−3, Λ = 5, l̃ = 0.1, Qnum
crit =0.1927). For the

first example the flow properties k, v and h at the maximum flow rate Qnum
crit are

shown in figure 14(a). Since the pressure loss due to convective momentum transport
is reversible, the minimum cross-section appears at half the channel length l∗ = l/2.
The pressure loss along 0 < x < l∗ is recovered along the distance l∗ <x < 1. With
increasing l̃ the frictional loss �h increases and the position of the minimal cross-
section l∗ moves towards the outlet. The influence of the convective term vanishes. In
the extreme example FRIC (figure 14b) the local importance of the convective term is
reduced to a small zone at x = l∗, leading to the distinct constriction of the flow path
at the channel outlet. As a result, the total frictional loss increases approximately
linearly with x as indicated by the nearly linear increase h. Figure 15 shows S∗

ca versus
Q/Qnum

crit for both examples. Both S∗
ca tend towards unity at critical conditions, but

the rate of change differs significantly. In contrast to CONV the S∗
ca from example

FRIC stays low for a wide range of Q (S∗
ca < 0.1 for Q < 0.9Qnum

crit ), but increases
strongly for Q > 0.9Qnum

crit . This behaviour demonstrates the small influence of the
convective acceleration which is (i) significantly restricted to a small zone at the
smallest cross-section and (ii) appears only when the flow runs near the critical
condition. The drop-tower experiments which cover a wide range of the transitional
domain (10−3 < l̃ < 10−1) confirm these findings. The experiment DT-35a at the
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Figure 16. Contour maps of the critical flow rate Qnum
crit plotted in logarithmic scale as

function of the Ohnesorge number and length l̃, (a) for Λ= 5 and (b) for Λ= 50.

lower range of the transitional domain is essentially dominated by the convective
acceleration. Thus, the shape is similar to example CONV. Experiment DT-29 is
dominated by friction characterized by the sharp distinct minimum of the cross-
section as in the example FRIC.

For flow lengths l̃ > 0.1, the flow variables do not deviate significantly from figure
14(b). However, the model computations state that the Sca does not tend towards
unity. As shown in figure 13, Smax

ca at Qnum
crit decreases rapidly and tends towards zero.

Inasmuch as the choking effect depends on the interaction between the pressure
gradient and the convective acceleration, the mechanism becomes insignificant if the
convective term of (2.17) is negligibly small compared to the frictional term. In this
situation, the flow is purely viscous limited. This limiting mechanism is akin to that
of viscous flows in flexible tubes (Wilson, Rodarte & Butler 1986). For l̃ > 0.1, �h= 1
may be used to predict the maximum flow rate for friction dominated flow. With
�h= 1 and Λ → ∞, integration of (2.17) neglecting the flow losses due the change of
the velocity profile yields

Qcrit =
2

Kpf l̃
. (5.2)

The knowledge of the maximum flow rate is important for technical applications.
Figure 16 shows Qnum

crit for a wide range of the parameters (10−5 � Oh � 10−2, 10−5 �
l̃ � 10, Λ = 5, 50). Similar to the discussion of figure 13, three regions with a quali-
tatively different behaviour of Qnum

crit can be identified. As expected, the maximum flow
rate decreases with increasing channel length. The maps indicate that the maximum
flow rate is independent from Oh for friction-dominated flows (l̃ > 0.1), which justifies
that the Oh dependence is fully characterized by our dimensionless length l̃. In this
region a fit of the data gives

Qcrit =

(
1 − 1

5Λ

)
2

Kpf l̃
, (5.3)

which tends to (5.2) for Λ → ∞. For smaller channel lengths, the maximum flow rate
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Figure 17. Analytical maximum channel length as a function of the inlet speed index Sca0

for M = 1 (solid line) and M = 15 (dashed line). For comparison, the examples FRIC, DT-33
and TE-35a are depicted. Note, that in contrast to the data in § 4, DT-33 and TE-35a were
computed with h0 = 0.04.

increases with increasing Oh in the convective flow domain. Similarly to the friction
dominated regime, the values of Qnum

crit increase with increasing aspect ratio.

5.5. Analytical solutions

As a consequence of (3.11), we deduce an analytical solution for the maximum
channel length at Sca = 1. For simplification, a flow with a fully developed velocity
profile and small curvature of the surface is assumed. With the latter assumption,
A(h) may be approximated linearly so that the definition of M in (3.8) yields M =1.
Numerical computations using the complete model show that M varies within the
range of 1 � M � 70. We now understand M as an average constant property. The
integration of equation (3.9) from the channel inlet at x = 0 (with A(x = 0) = 1 and
Sca(x = 0) = Sca0) to an arbitrary channel position x then yields A= (Sca0/Sca)

2/(2+M).
With this expression, we obtain

l̃max

Kpf

2Q
= 1 − M + 2

M + 1
S

−2/(M+2)
ca0 +

1

M + 1
S−2

ca0 (5.4)

by integration of (3.11) within the limits (x = 0, Sca = Sca0) and (x = l̃max, Sca = 1).
Figure 17 shows the analytic solutions (5.4) for M = 1 (solid line) and M = 15 (dashed
line). The black squares are numerical solutions of (2.17) and (2.18) performed for
the parameters of FRIC, DT-33 and TE-35a with the boundary condition h0 = 0.04.
Obviously a constant M (M = 15 in the case of small h0) is sufficient to obtain a
good agrement between the analytical solution and the numerical computation for
the complete transition flow regime addressed in figure 13.
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6. Summary
In this work, the forced liquid flow through an open capillary channel under

low-gravity conditions was investigated experimentally, numerically and theoretically.
Besides the determination of key characteristic features of the flow such as the profile
lines of the surface shape and the critical flow rate, the investigations focused on the
effect of flow rate limitation due to choking. Flow rate limitations are observed if
the adjusted flow rate of the steady flow exceeds a certain limit leading to a collapse
of the free surfaces at the outlet. Under such conditions, the governing steady-state
equation yields no solution and the flow becomes unsteady.

The particular channel studied consists of two parallel plates with small uniform
gap, bounded by free liquid surfaces at the open sides. A one-dimensional flow model
is presented in which the liquid pressure is related to the capillary pressure at the free
surface including both principal radii of curvature. Besides the convective and viscous
losses, the flow model considers the additional pressure loss due to the change of the
velocity profile in the entrance region. The gap ratio Λ, the Ohnesorge number Oh
and the dimensionless length l̃ are identified as the governing parameters of the flow.
The governing equations are solved numerically, yielding the maximum flow rate and
the innermost surface position as a function of these parameters.

Owing to the form of the governing equations, similarities exist between the
channel flows and compressible gas flows as well as open channel flows under normal
gravity conditions. The longitudinal small-amplitude wave speed is responsible for the
occurrence of choking and is discussed. By the ratio of the mean liquid velocity and the
longitudinal wave speed a local capillary speed index is introduced. A reformulation
of the momentum equation in terms of this speed index shows that the flow rate is
limited if the local speed index becomes unity – the choking condition.

Experiments in a drop tower and aboard a sounding rocket are presented. The drop-
tower experiments are designed to determine the surface profiles and the maximum
flow rate as a function of Λ, Oh and l̃. Both data show good agreement with
the numerical calculations. The influence of the speed index is studied aboard the
sounding rocket for a single parameter set of the dimensionless numbers. During
the ballistic flight, the flow rate is increased incrementally to the upper limit. To the
favourable agreement of the experimental and numerical profiles, the speed index also
agrees with the numerical prediction. Since it tends towards unity for increasing flow
rate, we conclude that the collapse of the surface occurs because of the occurrence of
choking.

Finally, a numerical parameter study is performed that identifies three regions
in which the flow limitation is caused by convective and frictional pressure losses
leading to distinctly different interface profiles, which correspond to the experimentally
determined profiles. The limit of application of the choking model is shown which
appears in the case of the Stokes flow approximation. For this friction-dominated
case we find an expression for the maximum flow rate expressed in terms of the key
parameters of the problem. Invoking several approximations, an analytic solution is
possible yielding the maximum channel length for given inlet boundary conditions.
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